Estructura interna de los metales

Todos los metales tienen una estructura cristalina semejante. Millones de millones de átomos se agrupan muy juntos, tan juntos como sea posible, como naranjas en un cesto. Este arreglo deja un mínimo de espacio vacío entre los átomos del metal.

Simplificando más los cristales de metal, veremos que los espacios entre los átomos no están totalmente vacíos.

Hay partículas extremadamente pequeñas, llamadas electrones libres, que aparecen en ellos con un movimiento irregular: para atrás y adelante, para arriba y abajo, hacia todos lados, sin una trayectoria definida. Muchos metales tienen un electrón libre por cada átomo de su estructura cristalina.

El movimiento desordenado e irregular de los electrones libres es causado por la energía calorífica, que está presente aun a muy bajas temperaturas.

Cada átomo de metal contiene un cierto número de electrones internos o fijos, los cuales no tienen libertad de abandonar el átomo.

Si seguimos observando los demás átomos que están a continuación, nos daremos cuenta de que van formando una especie de cadena, cuyos eslabones serían las órbitas de los electrones, los cuales se tocarían en un solo punto y además sus trayectorias son contrarias una con respecto a otra, formando una especie de tren de engranes.

Una de las características importantes del átomo es que es estable, es decir, no puede romperse ni cambiar sus características.

En condiciones naturales y normales de un átomo, no podemos agregarle o quitarle electrones, es decir, si un átomo tiene tres electrones en sus órbitas, no podemos agregar otro para que sean cuatro o viceversa. Esto puede lograrse a través de métodos científicos muy complejos, como la ruptura del átomo o fisión nuclear.

Si nosotros golpeáramos al electrón del primer átomo de la cadena de tal forma que éste se saliera de su órbita y se metiera en la órbita del segundo átomo, este último, como no puede admitir dos electrones en su órbita, tendrá que mandar su propio electrón a la siguiente órbita y así sucesivamente, hasta que el último átomo tuviera en su órbita dos electrones.

Para que esto pueda lograrse, es necesario cerrar los extremos del conductor o del alambre, formando lo que se conoce como un circuito cerrado.

El generador va a impulsar a los electrones para que pasen de una órbita a otra, pero para que esto suceda es necesario que el circuito esté cerrado, en caso contrario, existiría la fuerza que trate de hacer correr a los electrones; pero si el circuito está abierto, no habrá corriente, flujo continuo y controlado de electrones de órbita a órbita.

El flujo de electrones requiere una fuerza o presión que empuje los electrones en forma continua, que se le conoce con el nombre de voltaje o tensión. Cuando el circuito está cerrado, a la circulación de electrones que fluyen por el conductor se le conoce como corriente o intensidad de corriente.

Ahora bien, hemos hablado de un alambre de cobre, pero si hubiéramos hecho el análisis con un alambre de fierro, veríamos que la diferencia estriba en que los electrones del metal de fierro son más perezosos que los del metal de cobre, es decir, se mueven con mayor dificultad al ser empujados por el voltaje.

Se dice que el alambre de fierro tiene más resistencia que el alambre de cobre, porque ofrece más resistencia al paso de la corriente eléctrica.

Fuente: Manual de instalaciones eléctricas en sistemas de baja tensión de Condumex